0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как самостоятельно сделать простой регулятор напряжения

Как самостоятельно сделать простой регулятор напряжения

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Мощный регулятор напряжения на 12 вольт Мощный регулятор напряжения на 12 вольт

Описание регуляторов напряжения

Данный прибор предназначен для регулирования уровня исходящего сигнала, который передается на какое-либо устройство. Наиболее простым таким устройством является реостат. Это устройство имеет ползунок, благодаря которому можно механически отрегулировать подаваемую мощность. Значительным недостатком такого прибора является возможность его использования только в цепях с небольшой мощностью. Если напряжение достаточно велико, то реостат быстро перегреется и выйдет из строя.

regulyator_napryazheniya2

Для понимания, какие элементы понадобятся для изготовления регулятора, необходимо понимать, какие могут быть разновидности данных приборов. Все они делятся по виду выходного сигнала:

  • нестабилизированные и стабилизированные;
  • аналоговые и цифровые.

regulyator_napryazheniya3

Первые виды могут быть использованы без применения печатных плат и микросхем. Поэтому выбирая элементы для самостоятельного изготовления регулятора лучше остановить свой выбор на резисторах транзисторах либо тиристорах. А вот применение аналоговых либо цифровых печатных схем без специальных знаний в радиоэлектронике вряд ли получится.

Конструкции генераторов. Примеры схем

Конструкции генераторов. Примеры схем

Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.

В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в
точности заданной формы (как например, генератор горизонтальной развертки осциллографа).

Релаксационный генератор

Очень простой генератор можно получить несложными манипуляциями. Зарядим конденсатор через резистор (или источник тока), а затем, когда напряжение достигнет некоторого порогового значения, быстро его разрядим и начнем цикл сначала. Это можно сделать с помощью внешней цепи, обеспечивающей изменения полярности тока заряда при достижении некоторого порогового напряжения. Следовательно, будут генерироваться колебания треугольной формы, а не пилообразные. Генераторы, построенные на этом принципе, известны под названием «релаксационные генераторы». Они просты и недороги и при умелом проектировании могут обеспечивать удовлетворительную стабильность по частоте.

Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.

Конструкции генераторов. Примеры схем

Релаксационный генератор на базе операционного усилителя

Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения U + с постоянной времени, равной RC. Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до U- с той же самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 RС. Цикл не зависит от напряжения источника питания.

Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):

Читать еще:  Инструмент для регулировки фурнитуры пластиковых окон

Конструкции генераторов. генератор, управляемый напряжением

Пример схемы генератора, управляемого напряжением

Иногда необходим генератор с очень низким уровнем шума (так называемый «низкий внеполосный шум»). В этом отношении хороша простая схема, показанная на рисунке:

Конструкции генераторов. генератор с низким уровнем шума

Генератор с низким уровнем шума

В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы R2 и С. Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.

Представленная на рисунке ниже схема имеет даже более низкий уровень шума.

Конструкции генераторов. малошумящий генератор

Малошумящий генератор

Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.

Стабилизатор напряжения с применением транзистора

Если нужно обеспечить более-менее значительный ток нагрузки и снизить его влияние на стабильность нужно усилить выходной ток стабилизатора при помощи транзистора, включенного по схеме эмиттерного повторителя (рис.2).

Схема параметрического стабилизатора напряжения на одном транзисторе

Рис. 2. Схема параметрического стабилизатора напряжения на одном транзисторе.

Максимальный ток нагрузки данного стабилизатора определяется по формуле:

Ін = (Іст — Іст.мин)*h21э.

где Іст. — средний ток стабилизации используемого стабилитрона, h21э — коэффициент передачи тока базы транзистора VT1.

Например, если использовать стабилитрон КС212Ж (средний ток стабилизации = (0,013-0,0001) / 2 = 0,00645А), транзистор КТ815А с h21 э — 40) мы сможем получить от стабилизатора по схеме на рис.2 ток не более: (0,006645-0,0001) * 40 = 0,254 А.

Читать еще:  Как отрегулировать дверцы шкафа и мебели регулировка петель самому

К тому же, при расчетах выходного напряжения нужно учитывать, что оно будет на 0,65V ниже напряжения стабилизации стабилитрона, потому что на кремниевом транзисторе падает около 0,6-0,7V (примерно берут 0,65V).

Попробуем рассчитать стабилизатор по схеме на рисунке 2.

Возьмем такие исходные данные:

  • Входное напряжение Uвх = 15V,
  • выходное напряжение Uвых = 12V,
  • максимальный ток через нагрузку Ін = 0,5А.

Возникает вопрос, что выбрать — стабилитрон с большим средним током или транзистор с большим h21э?

Если у нас есть транзистор КТ815А с h21э = 40, то, следуя формуле Ін = (Іст -Іст.мин) * h21э, нам потребуется стабилитрон с разницей среднего тока и минимального 0,0125А.

По напряжению он должен быть на 0,65V больше выходного напряжения, то есть 12,65V. Попробуем подобрать по справочнику.

Вот, например, стабилитрон КС512А, напряжение стабилизации у него 12V, минимальный ток 1 мА, максимальный ток 67 мА. То есть средний ток 0,033А. В общем подходит, но выходное напряжение будет не 12V, а 11,35V.

Нам же нужно 12V. Остается либо искать стабилитрон на 12,65V, либо компенсировать недостаток напряжения кремниевым диодом, включив его последовательно стабилитрону как показано на рисунке 3.

Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом

Рис.3. Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом.

Теперь вычисляем сопротивление R1:

R = (15 -12) / 0,0125А = 240 Ом.

Несколько слов о выборе транзистора по мощности и максимальному току коллектора. Максимальный ток коллектора Ік.макс. должен быть не менее максимального тока нагрузки. То есть в нашем случае, не менее 0,5А.

А мощность должна не превышать максимально допустимую. Рассчитать мощность, которая будет рассеиваться на транзисторе можно по следующей формуле:

Р = (Uвх — Uвых) * Івых.

В нашем случае, Р = (15-12)*0,5=1,5W.

Таким образом, Ік.макс. транзистора должен быть не менее 0,5А, а Рмакс. не менее 1,5W. Выбранный транзистор КТ815А подходит с большим запасом (Ік.макс.=1,5А, Рмакс.=10W).

Генератор с регулировкой частоты

Если вам нужна возможность регулировки звуковых частот в заданном диапазоне, то возможно, вам пригодится схема на рисунке 4.

Рис. 4 — Схема генератора с регулировкой частоты

Генератор имеет следующие параметры:

Диапазон частот (разбит на 4 поддиапазона) — 18 Гц — 32 кГц,

  1. 18 — 160 Гц;
  2. 140 — 1100 Гц;
  3. 0,9 — 6,5 кГц;
  4. 5,2 — 32 кГц.

То есть охватывается весь слышимый человеческим ухом спектр.

Уровень выходного напряжения — 0,5 В,

Коэффициент гармоник — менее 1 %,

Неравномерность выходного напряжения — менее 2%.

Обычно в генераторах синусоидальных колебаний для перестройки по частоте используются сдвоенные переменные резисторы. Для получения минимальных искажений необходимо использовать прецизионные блоки резисторов, которые весьма дефицитны и дорогостоящие.

В данном генераторе для перестройки по частоте использован одиночный переменный резистор, что упрощает и удешевляет конструкцию.

Читать еще:  Как отрегулировать двери шкафа по горизонтали

Несмотря на кажущуюся громоздкость схемы, генератор имеет очень высокую повторяемость и легко настраивается.

В конструкции применены транзисторы с β не ниже 40.

Настройка конструкции: резистором R1 устанавливаем амплитуду колебаний на выходе равной 0,5 В, затем подстроечными резисторами R3 и R9 добиваемся получения минимальных искажений.

Для того что бы понять какой стабилизатор для насоса вам нужен.

  1. В первую очередь нужно сориентироваться по мощности насоса.
  2. Во вторых нужно учесть пусковую мощность.

У разных насосов, различная мощность и различные пусковые токи, которые тоже могут существенно отличаться в зависимости от конструкции насоса и его производителя, что в первую очередь влияет на выбор прибора и самое главное, на его цену.

Таблица с подобранными мощностями стабилизаторов ,
под мощность насоса.( при клике на указанную мощность
вы попадете на страницу с подобранными стабилизаторами)
Мощность насоса, ВтМощность стабилизатора
3001000 ВА
500-7002000 ВА
9003000 ВА
1200-15005000 ВА
1600-20006000 ВА
21007000 ВА

Какой стабилизатор напряжения подойдет для скважинного насоса Грундфос 800 Вт. Практически у всех насосов этого производителя пусковой коэффициент 1,8 т.е. если мощность, к примеру 0,8 кВт, то понадобится стабилизатор мощностью 1,44 кВт, это будет 2 кВА.
Подойдут такие стабилизаторы, смотрите подборку на мощность от 2 до 3 кВА.

Скважинные насосы обычно имеют высокие пусковые токи, и это связано не только с мощностью, но и с глубиной размещения, длинной трубы, и есть ли гидроаккумулятор в системе водоснабжения. В случае если у вас сложная система водоснабжения, то лучше взять еще запас к мощности.

Один из вариантов для такого насоса, стабилизатор LIDER PS 3000 W-15 или ШТИЛЬ инстаб IS 3500 инверторного типа.

Что же касается насосов отопления, то подбор тоже зависит от мощности и пусковых токов. И как правило информацию можно найти на шильдике, хотя в наше время, не все производители пишут эту информацию на самих насосах. Вот пример от Grundfos.

таблица мощности
циркуляционных насосов
I-ток (А)P- (V)
мощность Вт
0.1740
0.2865
0.4295

Если у вас возникли затруднения, то конечно лучше доверить выбор специалистам, чтобы купить, на 100% подходящий вам стабилизатор для насоса.

На самом деле проблемы с работой электрооборудования могут возникать по многим причинам, и наши инженеры имеют огромный опыт по решению и устранению проблем с электропитанием.

В большинстве современных частных домов и дач, управление и питание водяных насосов расположены в (котельной) и их удобнее и экономически выгоднее стабилизировать все, вместе с котельным оборудованием, что в общем то будет дешевле.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector