Не регулирует 4 pin вентилятор - Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разница между вентиляторами 3 pin и 4 pin

Разница между вентиляторами 3 pin и 4 pin

3-4pin

В связи с увеличением быстродействия и энергопотребления процессоры, видеокарты, оперативная память и другие компоненты компьютеров в качестве побочного эффекта нормальной работы выделяют огромное количество тепла. Эти устройства должны работать в определенном температурном диапазоне, чтобы предотвратить перегрев, нестабильность, неисправность и повреждения, приводящие к сокращению срока службы ПК.

У подавляющего большинства компьютеров есть хотя бы один кулер. Задача вентиляторов — поддерживать ваш компьютер в функциональном состоянии, либо вытягивая воздух с нагретых поверхностей, либо всасывая холодный воздух в системный блок. Во всех вентиляторах ПК используются бесщеточные двигатели, гарантирующие надежность, энергоэффективность и обратную связь по оборотам.

Определяемся с распиновкой кулера

Выбирая кулер, нужно обратить внимание на некоторые нюансы. Одним из них является распиновка (схема) контактов.

Определяемся с распиновкой кулера

Суть в том, что в компьютере для подключения кулера всегда предусмотрен 4-контактный разъем. А вот кулеры бывают:

  • 2-контактные (2-pin);
  • 3-пиновые;
  • 4- pin.

Рассмотрим, как подключить кулер к блоку питания компьютера.

  1. Основные два провода, которые есть в любой распиновке – это + (напряжение) и – (заземление). Недостаток двухпиновых кулеров – невозможность регулировать скорость оборотов вентилятора без дополнительного оборудования.
  2. Теперь разберемся с тем, как подключить трехпиновый кулер.

Такие устройства, помимо основных резъемов, снабжены третьим, подающим сигнал о скорости вращения лопастей вентилятора на материнскую плату. В сравнении с 2- pin, за оборотами з-pin кулера можно следить и регулировать их с помощью ПО.

Для подключения таких кулеров нужно воспользоваться переходником или оставить незадействованными дополнительные разъемы.

  1. Кулер с 4 проводами. Дополнительный провод подает сигнал на материнскую плату, которая, через него, может управлять оборотами вентилятора.
  2. Довольно распространенный четырехпиновый коннектор Molex.

Четырехпиновый коннектор Molex для кулера

У него 2 разъема напряжения – 12 и 5 V – и два соответствующих заземления. Такие коннекторы дают возможность менять напряжение на кулере, тем самым регулировать обороты вентилятора. Если 12 V много, а 5 мало, можно подключиться к разъемам напряжения наоборот и получить на выходе 7 V.

Измерение посадочных мест под вентиляторы

После того как вы определились с размерами вентиляторов, нужно выбрать их правильный размер. Дело в том, что размер кулера влияет на его производительность и уровень шума, который он производит. Чем больше кулер, тем больше воздуха он может через себя пропустить за единицу времени и тем тише он работает. Поэтому не стоит экономить и всегда нужно устанавливать самые большие кулеры из тех, что помещаются в корпус вашего компьютера.

Важно понимать, что разные корпуса рассчитаны на использование кулеров разных размеров. Более того, разные места для установки могут быть рассчитаны на разный размер. Например, на передней стороне корпуса могут быть посадочные места размером 140?140 мм, а на задней стороне корпуса 120?120 мм или наоборот. Поэтому перед покупкой нужно изменить посадочные места и определить размер кулеров, которые вам необходимы.

расстояние между крепежными отверстиями кулера

Самый простой и надежный способ измерения посадочных мест для кулеров — это измерение между центрами крепежных отверстий. Замерив эти расстояния, вы сможете определить размер кулера опираясь на значения приведенные ниже.

Расстояние между крепежными отверстиями и размер кулера:

  • 32 мм — 40?40 мм
  • 50 мм — 60?60 мм
  • 71.5 мм — 80?80 мм
  • 82.5 мм — 92?92 мм
  • 105 мм — 120?120 мм
  • 125 мм — 140?140 мм
  • 154 / 170 мм — 200?200 мм

Подключение кулера к материнской плате

Для подключения кулеров к материнской плате предусмотрен специальный разъём, имеющий от 2-х до 4-х контактов:

Если вас интересует сколько кулеров можно подключить к материнской плате, то таких MOLEX Small-коннекторов может быть от 1-го до 10-12 штук (в зависимости от новизны, форм-фактора, предназначения платы), однако чаще всего это количество ограничивается 3-мя или 5-ю. Располагаются они чаще всего по периметру материнской платы:

С помощью именно таких разъемов происходит подключение кулеров к материнской плате. Также возможен вариант подключения корпусных кулеров напрямую к блоку питания в разъём MOLEX Large:

Для того, чтобы правильно подключить кулер, необходимо узнать каким из перечисленных выше двух способов он запитывается. Если подача электропитания происходит с помощью MOLEX Small, кулер необходимо подключить к соответствующим разъёмам на материнской плате, так как с виду одинаковые коннекторы могут использоваться для совершенно разных целей. Их назначение определяется с помощью надписи около коннектора. Рассмотрим некоторые из них:

  • CPU_FAN — коннектор для подключения процессорного кулера.
  • SYS_FAN или CHA_FAN — коннектор для подключения корпусных кулеров.
  • CPU_OPT (CPU_OPTIONAL) — универсальный коннектор для подключения второго процессорного кулера или помпы системы жидкостного охлаждения. Если вас интересует как подключить дополнительный кулер к материнской плате, то именно сюда.
  • EXT_FAN (EXTENDABLE_FAN) — коннектор, поддерживающий подключение одновременно до 3-х кулеров посредством специального разветвителя.
Читать еще:  Почтовый сервер синхронизация по imap

Если же кулер питания подключён с помощью MOLEX Large, его необходимо подключить напрямую к MOLEX-разъёмам блока питания. Допускается использование переходников SATA-MOLEX. Неправильно подключить кулер не получится, так как оба разъёма MOLEX имеют ключи для подключения.

Однако стоит учитывать, что процессорный кулер строго рекомендуется подключать к разъёму, обозначенному как CPU_FAN на материнской плате. В ином случае материнская плата не сможет регулировать обороты кулера, что может вызвать высокий уровень шума или крайне быстрый перегрев процессора. Некоторые материнские платы отказываются загружать ОС без подключённого в разъём CPU_FAN кулера.

Подключение процессорного кулера

Кулер – один из основных элементов защиты процессора от перегрева и наиболее распространенным по сравнению с системами жидкостного охлаждения и алюминиевыми модулями. После установки кулера на посадочное место, на материнской плате необходимо найти 4-pin штекер с обозначением CPU_FAN (процессорный вентилятор).

2Q==

Установите кабель подключения в штекер. Так как процессорный кулер получает питание напрямую от платы, то никаких дополнительных кабелей подключать не нужно. Регулировка оборотов вентилятора будет осуществляться автоматически.

2Q==

Подключение корпусных кулеров к плате

Количество вентиляторов бывает разным, в зависимости от модели корпуса. В офисных машинах устанавливают 1 вентилятор, в игровых их может быть 3,5 и больше. Каждый кулер подключается при помощи 3-pin коннектора в 4-pin штекер на материнской плате с надписью SYS_FAN (системный вентилятор).

9k=

2Q==

Более одного вентилятора подключать не рекомендуется, велик риск возникновения избыточного напряжения на дорожку и сгорания штекера. Компания ASUS создала платы с портами расширения EXT_FAN, поддерживающими платы-разветвители и переходники. Тем не менее, самый безопасный способ подключения – присоединение кулеров к блоку питания через Molex (3-pin).

9k=

Подключение корпусных кулеров к реобасу

Реобас – контроллер для регулировки оборотов корпусных кулеров. В зависимости от его модели, вентиляторы подключаются несколькими способами.ґ

Встроенный реобас имеет вид кнопки на корпусе с несколькими позициями для регулировки, что характерно для серии DeepCool Kendomen. Без разветвителей к реобасу подключаются только верхние вентиляторы через 3-pin коннекторы. Контроллер обеспечивается питанием за счет порта Molex, присоединяемого к блоку питания.

9k=

Встраиваемые реобасы выпускаются размером 5,25 дюймов, чтобы установить их на переднюю панель системного блока. Питание осуществляется через тот же Molex, однако вентиляторы подключаются напрямую к блоку управления через 4-pin штекеры. В зависимости модели реобаса, штекер может быть как отдельным для каждого вентилятора, так и общим для нескольких штук.

Z

В чем же отличие?

Вентиляторы с разным количеством ножек называются 3 pin и 4 pin соответственно. Разница в них между техническим нюансом в работе:

Если у кулера 4 ножки, он считается более современным, а стоит, скорее всего, на современной же модели материнской платы или вовсе на процессоре. Такие устройства позволяют компьютеру контролировать скорость вращения крыльчатки. Соответственно, когда процессор разогревается, лопастям отдается команда на более быстрое вращение и охлаждение происходит быстрее. Сигнал идет непосредственно по четвертому проводу, от управляющего чипа.

Если у кулера 3 ножки, это значит, что он — устаревшая модель. У него нет четвертого провода, поэтому контроль скорости вращения осуществляется с помощью изменения напряжения силового кабеля. Такой способ менее надежен, позволяет гораздо менее точное воздействие, с ним экстренно охладить перегревшийся процессор невозможно.

По большому счету, устройство с 4 ножками лучше, оно позволяет заботиться об охлаждении сообразно текущей ситуации. Но бывает такое, что его просто некуда ставить — старые материнские платы не обладают четвертым разъемом.

Соответственно, при разных комбинациях подключения результаты получатся разными:

3-pin подключается к разъему 4-pin. Есть варианты: либо материнская плата вообще не сможет управлять вентилятором, тогда он начнет крутиться на стандартных оборотах. Либо она будет подавать ему команды с помощью изменения напряжения кабеля.

4-pin подключается к разъему 4-pin. Все действует так, как должно.

4-pin подключается к разъему 3-pin. Есть варианты: либо он подключиться, после чего заработает со стандартной скоростью. Либо не подключиться, и тогда нужно будет поменять местами провода 3 и 4, чтобы тот из них, который отвечает за частоту оборотов, остался незадействованным. Скорость в этом случае тоже регулироваться не будет.

Если на материнской плате разъем 4-pin, то стоит покупать соответствующий вентилятор — с ним она будет работать идеально.

Если же на ней разъем 3-pin, то можно подумать над выбором. Вентилятор 3-pin стоит брать в том случае, если замены материнской платы не предвидится и хочется сэкономить. Вентилятор 4-pin стоит брать, если замена состоится — тогда он будет «на вырост».

Читать еще:  Икеа настольная лампа с регулировкой яркости

3 pin и 4 pin разница вентиляторы

Если у Вас имеется даже небольшой опыт сборки компьютерных системных блоков, то Вы наверняка могли заметить, что иногда коннекторы вентиляторов охлаждения процессора, корпусные вентиляторы имеют разное количество ножек: 4 или 3. Их еще называют 4 pin и 3 pin соответственно. В относительно старых системниках на материнских платах только процессорный вентилятор имеет 4 провода, остальные же разъёмы 3 пиновые. На современных системных платах на базе шестого или седьмого поколения процессоров intel, как правило, распаяны только 4 pin разъёмы, а 3 pin уже доживают свой недолгий век и более мы не увидим их в следующих поколениях кулеров и вентиляторов.

В чем разница между тремя и четырьмя проводными вентиляторами, помимо разницы в количестве проводов? Ответ на этот вопрос читайте далее в этой статье.

Как подключить 3-pin кулер к 4-pin

Для подключения 3-pin кулера к 4-pin разъему на материнской плате для возможности программной регулировки оборотов служит вот такая схема:

При прямом подключении 3-х проводного вентилятора к 4-х контактному разъёму на материнке вентилятор будет всегда вращаться, потому как у материнской платы не будет возможности управления 3 pin вентилятором и регулировки числа оборотов кулера.

Не регулирует 4 pin вентилятор

Непонимание работы ШИМ или PWM ( Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Широтно-импульсная модуляция (ШИМ, англ. Pulse-width modulation (PWM)) — управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постоянным напряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна :

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности. Здесь R — величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3 V при токе нагрузки 10 A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

U нас для современных полупроводниковых коммутаторов приближается к 0,3 v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

В ШИМ в качестве ключевых элементов использует полупроводниковые приборы в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю.
Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала.
В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность выделяемая в ключе значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция — управление средним значением напряжения на интегрирующей нагрузке путём изменения скважности импульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.

Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение — эквивалентное постоянное напряжение изменяется в зависимости от скважности ( Q ) импульсов.

здесь: Q — скважность, t и — длительность импульса, T — период следования импульсов.

Читать еще:  Блоки питания 220 12 вольт с регулировкой

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв — эквивалентное постоянное напряжение ( Вольт ), Q — скважность, E — напряжение источника от которого запитан ШИМ преобразователь ( Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв . При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

В статье "Переходник для вентилятора 3 pin на 4 pin" http://de1fer.ru/?p=45#more-45 владелец блога приводит схему вентилятора с P WM .

здесь: GND — земля (общий), Control — контакт P WM управления, +12 — напряжение питания, Sense — вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4. Да и судя по параметрам транзистора "PWM" он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

Pc maxUcb maxUce maxUeb maxIc maxTj max, °CFt max
800mW100V80V5V1A150°C200MHz

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Есть другой вариант схемы вентилятора с P WM на форуме Radeon.ru

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит — надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

Я бы не рекомендовал применение вентиляторов имеющих встроенный PWM (4- pin ) одновременно с какими либо иным регуляторам оборотов вентилятора.

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены — то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM — токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM — ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM — ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или ,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector