0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ошибки частотных преобразователей

Ошибки частотных преобразователей

Современные частотные преобразователи совмещают функции управления и защиты электродвигателя. При ненормальных режимах работы, авариях, преобразователь:

  • Экстренно отключает электродвигатель (торможение осуществляется выбегом).
  • Плавно тормозит привод.
  • Запрещает запуск двигателя.

При этом сообщение с кодом неисправности выводится на дисплей устройства и фиксируется в запоминающем устройстве. При наличии комплексной системы автоматизации и телемеханики, аварийный сигнал подается на удаленный пункт управления и центральный процессор.

Причинами остановки электродвигателя могут быть:

  • Поломки преобразователя частоты.
  • Неисправности электропривода или оборудования.
  • Аварии в сети.

Большинство частотных преобразователей имеют функцию самодиагностики, которая позволяет определить причину аварийной остановки. Ошибки разделяются на внутренние и внешние. Последние связаны с неисправностями двигателя, авариями сети. Внутренние ошибки говорят о неисправностях преобразователя или неправильных настройках.

Подготовка

Установка преобразователя частоты для электромотора – процесс сложный и ответственный. Он пройдет тем проще и быстрее, чем правильнее сделан выбор частотного преобразователя. Поиск оптимального варианта устройства отталкивается от условий будущей эксплуатации. Опорные моменты следующие.

  • Место установки частотного преобразователя. От него зависит несколько важных характеристик частотника. Класс влаго- и пылезащищенности корпуса. Современные преобразователи частоты выполняются в нескольких классах – IP 20, 54, 65. Чем выше защита (первая цифра отвечает за пылезащиту, вторая – за влагонепроницаемость), тем шире возможности по выбору места установки. Модели с IP 20 монтируют только в электротехнические щиты (с автоматикой или ручной системой управления приводом), установленные в помещениях с низким уровнем влажности. Установка в корпусах IP 54 или IP 65 возможна рядом с обслуживаемым мотором.
  • Основание преобразователя частоты. Если устройство будет в зоне, удаленной от вибраций и электромагнитных полей, ему достаточно ровной твердой площадки. В противном случае монтаж может осуществляться на опорах, гасящих вибрации, или в шкафах с экранами.
  • Климатическое исполнение. Если преобразователь частоты устанавливается на открытой или частично открытой платформе, климатическое исполнение должно соответствовать максимальной и минимальной температуре окружения в теплый и холодный сезон, соответственно. При закрытом монтаже температурный режим, которому должен соответствовать прибор, задает помещение.

При установке частотника в шкаф важно соблюсти отступы корпуса от стенок шкафа или других приборов, расположенных в сборке. Размеры отступов определяются индивидуально по мощности монтируемых устройств. Для отвода тепла в закрытом пространстве шкафа в него устанавливаются вентиляторы достаточной мощности (зависит от количества преобразователей частоты и других механизмов).

Модификация понижающего преобразователя XL4015 регулируемого с помощью ограничителя тока

Модуль регулятора построен с использованием очень небольшого количества дополнительных деталей, с ним легко работать и он состоит из встроенной частотной компенсации и генератора фиксированной частоты.

Схема управления ШИМ имеет регулируемую продолжительность включения с постоянной скоростью от 0 до 100%. IC XL4015 также имеет встроенную функцию защиты от перегрузки по току.

Стандартный модуль

Стандартный модуль

Когда на выходе обнаруживается короткое замыкание, рабочая частота мгновенно понижается с 180 кГц до 48 кГц, что вызывает немедленное падение выходного напряжения и тока. Чип имеет полностью интегрированный блок компенсации, вне зависимости от каких-либо внешних компонентов.

Подключение стандартного преобразователя

Подключение стандартного преобразователя

Основные характеристики IC XL4015:

  1. Широкий диапазон входного напряжения от 8 В до 36 В
  2. Выходное напряжение регулируется от 1,25 В до 32 В
  3. Максимальный рабочий цикл может достигать 100%.
  4. Выходное напряжение составляет всего 0,3 В
  5. Частота переключения зафиксирована на уровне 180 кГц.
  6. Выходной ток постоянный, 5А.
  7. Встроенные силовые полевые МОП-транзисторы обеспечивают оптимизацию высокого напряжения/тока
  8. Эффективность работы впечатляет — 96%.
  9. Регулировка линии и нагрузки очень хорошая
  10. IC имеет функцию отключения при перегреве с внутренним управлением
  11. Точно так же он также имеет встроенную функцию ограничения тока.
  12. Излишне говорить, что микросхема также имеет функцию защиты от короткого замыкания на выходе.

Главный недостаток устройства

Хотя модуль XL4015 обладает множеством отличных функций, которые необходимы понижающему преобразователю, ему не хватает одной важной опции. В модуле нет устройства для регулировки выходного тока до желаемых уровней в соответствии со спецификациями нагрузки.

Так что, если вы хотите зарядить литий-ионный аккумулятор с помощью модуля XL4015, скажем, на 2 А, вы не сможете этого сделать из-за вышеупомянутого недостатка. Точно так же, если вы хотите управлять светодиодом 3,3 В при максимальном токе 3 А, вы тоже будете разочарованы, поскольку модуль рассчитан на фиксированный ток 5 А.

Как работает XL4015

Базовая рабочая схема понижающего преобразователя XL4015 показана ниже:

Схема базового модуля

Схема сконфигурирована так, чтобы вырабатывать фиксированные 5 В при постоянном выходном токе 5 А в ответ на вход питания от 8 В до 36 В. Характеристики входной мощности должны быть выше выходной, что означает, что входная мощность источника питания должна быть выше 5 В x 5 А = 25 Вт.

Следовательно, если используется входное напряжение 36 В, то входной ток должен быть выше 25/36 = 0,7 А. Если используется 8 В, то входной ток может быть выше 25/8 = 3 А и так далее.

Внутренняя схема IC XL4015 состоит из основных элементов, таких как генератор и усилитель ошибки. Хорошо рассчитанная и управляемая частота генератора 180 кГц генерируется на выводе 3 (SW) для питания конфигурации внешнего понижающего преобразователя, состоящего из диода, катушки индуктивности и конденсатора. Это позволяет понижающему каскаду обрабатывать входное питание до точных выходных 5 В, 5 А.

Читать еще:  Регулировка температуры воды в смесителе hansgrohe

Контакт 2 (FB) функционирует как вход для обратной связи усилителя ошибки. Минимального входного напряжения 1,25 В на этой распиновке достаточно, чтобы начать процесс отключения ИС.

Эта распиновка может быть сконфигурирована с делителем потенциала R1, R2, который гарантирует, что выходное напряжение никогда не может выходить за пределы диапазона 5 В, что затем вызывает напряжение выше 1,25 В на выводе FB, инициируя процесс выключения для IC, тем самым предотвращая переход выхода через уровень 5 В.

Это также означает, что выходное напряжение может быть отрегулировано до других значений, например 12 В или 15 В, путем соответствующего изменения номиналов делителя обратной связи R1/R2.

Цепочку R1/R2, также можно зафиксировать, используя следующую формулу для получения желаемого выходного напряжения:

  • Vвых=1,25х(1+R2/R1)

Регулировка предельного тока

Как видно из схемы, модуль XL4015 не имеет функции ограничения тока, которая, по-видимому, является основным ограничением модуля.

Тем не менее, устройство включает в себя вывод FB выключения, который может быть настроен со схемой внешнего ограничителя тока для выполнения этой функции. Это можно реализовать, как показано на следующей диаграмме:

схема внешнего ограничителя

RX можно рассчитать по закону Ома:

  • RX = 0,2/Текущий предел

Поскольку два транзистора соединены с выходом, имеющий очень высокий коэффициент усиления, разности потенциалов всего 0,2 В на RX должно быть достаточно для срабатывания вывода FB IC и инициирования действия по ограничению тока.

Как только ток устремится превысить желаемый предел, через RX возникает необходимый минимальный потенциал, вызывая проводимость NPN, что, в свою очередь, жестко запускает PNP BJT. Действие подает предполагаемый положительный постоянный ток на вывод FB, инициируя отключение.

Когда это происходит, выходной ток падает ниже установленного предела, выключая BJT и восстанавливая предыдущее состояние, при котором ток снова начинает превышать установленный предел, включая BJT. Цикл повторяется, гарантируя, что ток всегда остается в пределах установленного предела. При такой компоновке XL4015 оснащается очень полезной функцией регулируемого ограничения выходного тока.

Альтернатива XL4015 (эквивалентная схема)

Хотя модуль XL4015 легко приобрести в большинстве интернет-магазинов, микросхема не производится известными брендами и может в любой момент выйти из употребления. Поэтому альтернативная схема регулируемого понижающего преобразователя на 5 В с использованием дискретных компонентов представляется гораздо лучшим вариантом.

На следующей схеме показан очень эффективный понижающий преобразователь 5 В с использованием популярной микросхемы TL494:

понижающий преобразователь-TL494

В приведенном выше примере приведен простой, но чрезвычайно удобный прецизионный эквивалент понижающего преобразователя 5 В для XL4015. Здесь показано применение понижающего преобразователя солнечного инвертора, которое можно использовать для любой другой цели преобразователя постоянного тока в постоянный.

Использование TL494 гарантирует, что конструкция не устареет быстро, и замена IC будет всегда доступна, когда это потребуется. Здесь также имеется контур обратной связи усилителя ошибки, определяющий выходной ток, настраивая схему делителя потенциала, построенную на резисторах R8/R9.

Сила тока может быть отрегулирована соответствующей настройкой резистора R13.

  • R13 = 0,2/Максимальный предел тока

Еще одно большое преимущество использования вышеупомянутого дискретно построенного понижающего преобразователя — это уровень выходного тока, который не ограничен 5 А, а может быть повышен до гораздо более высоких уровней, просто нужно установить более мощные транзисторы, диаметр провода индуктора и номинал резистора R13.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

инвертирующая схема

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Читать еще:  Регулировать напряжение частотой источник питания

Схема 5

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Схема 6

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Схема 7

Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

Основные сведения о частотно-регулируемом электроприводе

Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток). Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Читать еще:  Как отрегулировать дверцу на пластиковом окне

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока. Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Рис.2. Упрощенная схема инвертора с широтно-импульсной модуляцией (ШИМ).

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.

Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Рис.3. Форма кривых напряжения и тока на выходе инвертора с широтно-импульсной модуляцией.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения. Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

Рис.4. Схема преобразователя частоты (инвертора)

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Советы по подключению тормозного резистора

Существует два способа подключения:

  1. Внутренний, когда резистор располагается внутри преобразователя частот;
  2. Внешний, через прерыватель, подключенный к шине внутри преобразователя.

На выбор подключения влияют конструктивные особенности конкретного агрегата и мощность преобразователя частоты. Первый способ подходит для ЧП до 30 кВт. Второй предназначен для более мощных.

Плавный пуск кран-балки

Несколько советов по подключению:

Перед началом работ измерьте напряжение на клеммах.

Обесточьте силовой модуль.

Соблюдайте правила монтажа, во избежание замыкания.

Обеспечьте сохранность кабеля от механических повреждений.

Используйте кабель с двойной изоляцией.

Прокладывайте в раздельных каналах или трубах.

Применять соединительные кабели длиной не более 100 метров при допустимом сечении вывода – 35 мм².

При выборе резистора следует начать с требований, предъявляемых процессом. Изучить технические характеристики. Рассмотреть специально для конкретного применения. В некоторых случаях решением может быть сочетание последовательного и параллельного соединения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector